The formula for the surface area of a regular pyramid is $S=\frac{1}{2} P \mathscr{P}+\mathbf{B}$ \boldsymbol{S} represents the surface area, \boldsymbol{P} represents the perimeter of the base, $\boldsymbol{\ell}$ represents the slant height, and \boldsymbol{B} represents the area of the base of the pyramid.
a.) Solve the formula for P.

$$
\begin{array}{lc}
\begin{array}{l}
S=\frac{1}{2} P l+B \\
-B
\end{array} & P=\frac{2 S-2 B}{l} \\
\frac{\text { or }}{2 \cdot S-B=\frac{1}{2} P l \cdot 2} & P=\frac{2(S-B)}{l}
\end{array}
$$

b.) What is the perimeter of the base of a regular pyramid with a surface area of 137 square centimeters, a slant height of 11 centimeters, and a base with an area of 24.8 square centimeters?

$$
\begin{gathered}
P=\frac{2 S-2 B}{\rho}=\frac{2(137)-2(24.8)}{11}=\frac{224.4}{11} \\
P=20.4
\end{gathered}
$$

The formula for potential energy is $\mathrm{P}=\mathrm{mgh}$ where P is potential energy, m is mass, g is gravity, and h is height. Solve this equation for gravity.

You are planning a visit to Canada for the weekend and check the weather to know what to pack. Their weather forecast is in Celsius but you need it in Fahrenheit. Solve the formula $C=5 / 9(F-32)$ for F. If the forecast calls for a temperature of 18 degrees Celsius, what is that in Fahrenheit?

$$
\begin{array}{rlr}
\text { 9. } C=\frac{5}{9}(F-32) \cdot q & F=\frac{9 c}{5}+32 \\
\frac{9 C}{5}=\frac{5(F-32)}{5} & F=\frac{9(18)}{5}+32 \\
\frac{9 C}{5}=F-32 \\
\frac{9 C}{5}+32 & F=\frac{162}{5}+32 \\
& & =32.4+32 \\
& F=64.4
\end{array}
$$

