Arithmetic Sequences

An Arithmetic Sequence is a numerical pattern that increases or decreases at a constant rate.

The constant rate is called the common difference

Determine whether each sequence is an arithmetic sequence. If the answer is yes, find the next term in the sequence.

1. $17,14,10,7,3, \ldots$
 $-3-4$

No
3. $0,1,4,9,16, \ldots$
1357
No
2. $-1,-2,-4,-8, \ldots$

No
4. $-5.25,1,7.25,13.5, \ldots$

Yes
5. Becca volunteers at an animal shelter after school. One of her jobs is feeding the adult cats. The table and graph show the amount of cat food she has before feeding each of the cats at the shelter.

Cat	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Cups of Food	12	11.25	10.5	9.75	9	8.25	7.5	6.75	6	5.25	4.5	3.75	3	2.25	1.5	0.75
.																

a. How much food does each cat receive?

$$
0.75 \text { or } 3 / 4 \text { of a cu }
$$

b. With the amount of food that Becca has, how many cats can she feed?
12.75

$$
17 \text { cats }
$$

c. Do you think the points from the table model a linear function? Yes

Each term of an arithmetic sequence can be expressed in terms of the first term a_{1} and the common difference d.

For example: Using the sequence: $22,17,12,7,2, \ldots$

Let's create a general rule one step at a time

Terms	Symbol	In terms of a_{1} and d	Number
First term	a_{1}	a_{1}	22

Second term

$$
\mathrm{a}_{2}
$$

$$
a_{1}+d
$$

$$
22+1(-5)=17
$$

Third term

$$
\mathrm{a}_{3}
$$

$a_{1}+2 d$
$22+2(-5)=12$

Fourth term
a_{4}

$$
a_{1}+3 d
$$

$$
22+3(-5)=7
$$

nth term

$$
a_{n}
$$

$$
a_{1}+(n-1) d
$$

$$
22+(n-\overparen{n-1)(-5)}
$$

$$
\begin{array}{r}
22+-5 n+5 \\
a_{n}=-5 n+27
\end{array}
$$

The n refers to the term's place in the sequence. So, when we say a_{6}, we are referring to the 6 th term in the sequence. When we say a_{n}, we are creating a rule (equation) that can be used to find any term in the sequence.
6. Use the arithmetic sequence $-\overparen{4,-1,2,5}, \ldots$ to complete the following.

$$
a_{n}=a_{1}+(n-1) \cdot d \quad d=3 \quad a_{1}=-4
$$

a. Write an equation

$$
\begin{aligned}
& a_{n}=-4+(n-1) \cdot 3 \rightarrow a_{n}=-4+3(n-1) \\
&-4+3 n-3 \\
& a_{n}=3 n-7
\end{aligned}
$$

b. Use the equation to find the 16 th term in the sequence.

$$
\begin{gathered}
a_{16}=3(16)-7 \\
a_{16}=41
\end{gathered}
$$

7. Use the arithmetic sequence $13,8,3,-2, \ldots$ to complete the following.

$$
\begin{aligned}
& a_{1}: 13 \\
& d:-5
\end{aligned}
$$

a. Write an equation for the nth term of the arithmetic sequence.

$$
\begin{aligned}
& a_{n}=a_{1}+d(n-1) \quad a_{n}=13-5 n+5 \\
& a_{n}=13-5(n-1) \quad * a_{n}=-5 n+18 *
\end{aligned}
$$

b. Find the 20th term in the sequence.

$$
\begin{aligned}
& a_{20}=-5(20)+18 \\
& a_{20}=-82
\end{aligned}
$$

