1. Coats cost $\$ 60$ and pants cost $\$ 40$. You have $\$ 1000$ to spend. Standard Form. $A x+B y=c$
a. Use x to represent coats and y to represent pants. Write an equation to represent the combinations that will spend all $\$ 1000$.

$$
60 x+40 y=1000
$$

b. Come up with a combination of coats and pants that will spend all \$1000.

$$
\begin{gathered}
60.10+40.10 \\
600+400 \\
1000 \\
(10,10) \\
\uparrow T \\
\text { Coats Pants } \\
(x) \quad(y)
\end{gathered}
$$

$$
60(6)+40(16)
$$

$$
360+640
$$

$$
1000
$$

2. Determine which of the following ordered pairs are solutions to the equation $4 x+3 y=24$.

Va. $(-3,12)^{x}$

$$
\begin{gathered}
4(-3)+3(12)=24 \\
-12+36=24
\end{gathered}
$$

\times b. $(0,4)$

$$
\begin{gathered}
4(0)+3(4)=24 \\
0+12=12
\end{gathered}
$$

X c. $(4,3)$

$$
\begin{aligned}
& 4(6)+3(0) \\
& 24+0=24
\end{aligned}
$$

$$
4(4)+3(3)=24
$$

$$
\begin{gathered}
4(12)+3(-8) \\
48+-24
\end{gathered}
$$

$$
24
$$

3. Using the equation $4 x+3 y=24$, fill in the blank for $(3,4)$

$$
3(4)=12
$$

4. Alex is buying lunch for her friends. She buys everyone burgers and fries. Each burger costs $\$ 6$ and each order of fries costs $\$ 2$. Alex has a total of $\$ 30$ to spend.
a. Complete the table to show possible combinations of burgers and fries Alex could buy that would spend ALL of her money.

Burgers	1	$\$ 6$	3	$\$ 18$	4	$\$_{24}$	5	$\$ 0$
Fries	12	$+\$_{20}$	6	$\frac{\$ / 2}{}$	3	$\frac{\$ 66}{}$	0	$\$_{0}$
$\$ 30$		$\frac{\$ 30}{}$		$\$ 30$				

b. If burgers are represented by x and fries are represented by y, write an equation to represent the situation showing Alex has $\$ 30$ to spend.

$$
6 x+2 y=30
$$

