Lesson 3.3 Part 2

Linear and Non-Linear Functions

A linear function is a function that has a graph that is a line. If the domain of the function is all real numbers, then the function is continuous. A linear equation can be used to describe a linear function.

Linear equations are often written in standard form.

Standard Form: $\mathrm{Ax}+\mathrm{By}=\mathbf{C}$

- A is positive
- A, B, and C have a GCF of 1
- No fractions or decimals

$$
\begin{aligned}
& \frac{2 x}{2}+\frac{4 y}{2}=\frac{6}{2} \\
& x+2 y=3
\end{aligned}
$$

Examples

$$
(2 x)^{2} \rightarrow(2 x)(2 x) \rightarrow 2 \cdot 2 x \cdot x
$$

1. Determine whether $y=4 x^{2}-(2 x)^{2}+3 x-5$ is a linear or nonlinear function.

$$
\begin{aligned}
y= & \underline{x}^{2}-4 x^{2}+3 x-5 \\
y & =3 x-5 \\
& \text { Linear }
\end{aligned}
$$

2. Determine whether $8-2 y=x$ is a linear or nonlinear function.

$$
\begin{aligned}
& \frac{-8}{-2}=\frac{x}{-2} \frac{8}{-2} \\
& y=-\frac{1}{2} x+4
\end{aligned}
$$

3. Determine whether $y=3 x^{3}-x^{2}+3 x+6$ is a linear or nonlinear function.

$$
\begin{aligned}
& \text { Not } \\
& \text { because } \\
& \text { exponents }
\end{aligned}
$$

4. Determine which of the equations below are linear or nonlinear

$$
\begin{array}{lc}
4 \times(2-y)=9 \\
8 x-4 x y-9 & -3 y=5-2 x \\
\text { Not } & \text { Linear } \\
y=\sqrt{2} x-4=\frac{3}{4} x-\frac{1}{3} \\
\text { Nape } \\
y=2 x-\sqrt{4}
\end{array}
$$

Functions in a Table

5. Salina kicks a soccer ball. The height of the ball after each half second is recorded in the table. Is the function that models the height of the ball a linear or nonlinear function?

Time (s)	Height (ft)
0	2
0.5	28
1	46
1.5	56
2	58
2.5	52
3	38
3.5	16

0.5

Look for slope

Not

6. Determine whether the values in each table are best modeled by a linear or nonlinear function.

Check for store

x	y
-2	4
-1	1
0	0
1	1
2	4
Not	

$\begin{aligned} & \frac{\Delta y}{\Delta x}=\frac{-9}{3} \frac{-3}{1}-\frac{6}{2}=\frac{-3}{1} \\ & \text { Linear }\end{aligned}$

